The goal of this project is to use DNA and RNA sequencing data collected from hundreds of patients with advanced bladder cancer, including a cohort at Hospital del Mar in Barcelona, to develop predictive models of the response to immunotherapy. We expect that, by including different types of neoantigens and new molecular biomarkers in the models, we will be able to achieve higher accuracy in the predictive models. The project is undertaken by a highly multidisciplinary team led by Mar Albà. The funding is for the period 2022-2024.
The key objective of the EU-funded NovoGenePop project, led by Mar Albà, is to understand how de novo gene birth emerges and explore the hypothesis that the process involves differences in gene content between individuals. To investigate this, researchers will develop novel computational methods for evaluating all transcripts in different biological systems and identify potential mutations that have led to the evolution of new genes. The project has a budget of about 2.5 Million Euros and is for the period 2022-2026. Read more about the project here
This project will extend and integrate the participants' existing text mining tools to provide a reusable workflow to extract human genotype-phenotype associations from scientific literature full-texts, tables and supplementary materials. These data will be imported into GWAS Central and DisGeNET, accelerating FAIR access to pioneering findings such as COVID-19 GWAS. The development of an annotated GWAS corpus based on full-text articles will enable the evaluation of existing and future text mining methodologies for extracting genotype-phenotype associations and metadata. This project is funded by ELIXIR for the period 2022-24.
IMPaCT Data es el Programa de Ciencia de Datos de la Infraestructura de Medicina de Precisión asociada a la Ciencia y la Tecnología (IMPaCT), en el que participan 47 instituciones de todas las comunidades, con institutos de investigación sanitaria, empresas, universidades o centros de investigación. Este proyecto está financiado por el Instituto de Salud Carlos III para el periodo 2021 a 2023.
RISK assessment of chemicals integrating HUman centric Next generation Testing strategies promoting the 3Rs, RISK-HUNT3R, is the new European effort to develop a new modular framework for animal-free next generation risk assessment (NGRA) driven by world-leading experts from various disciplines. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 964537 for the period 2021 till 2026.
PROMPT: Toward PrecisiOn Medicine for the Prediction of Treatment response in major depressive disorder through stratification of combined clinical and -omics signatures. ERANET funded by AECC and ISCIII for the period 2021 - 2024.
All cells face the vital challenge of sensing their environments and responding in appropriate ways. How are different signalling pathways activated and modulated in precise and reproducible ways? Filling this gap in knowledge is absolutely necessary to advance the next generation of pharmaceutical drugs. Cost Action ERNEST: “European Research Network on Signal Transduction” is funded by the H2020 Framework Programme of the European Union for the period 2019 to 2023.
MINDCOVID, tiene por objetivo estudiar la salud mental de los trabajadores sanitarios así como los enfermos de la COVID-19 y sus contactos cercanos. Todos ellos son colectivos vulnerables al previsible impacto psicológico de la pandemia por COVID-19. El proyecto está financiado por el Instituto de Salud Carlos III y coordinado por el IMIM.
El proyecto VEIS (Valorización del Archivo Europeo de Genoma-Fenoma (EGA) para la Industria y la Sociedad) tiene por objetivo desarrollar, promover y gestionar una serie de herramientas computacionales para permitir un fácil acceso a EGA (Archivo Europeo de Genoma-Fenoma) y a los datasets almacenados en este archivo. Para hacerlo, se creará un ecosistema abierto de tecnologías que cubra y se adapte a las necesidades de análisis e interpretación de datos ómicos y clínicos en entornos de investigación y de aplicación en biomedicina a través de la base de datos EGA. La UPF coordina este proyecto que está cofinanciado en un 50% por FEDER 2014-20 y el Departament de Recerca i Universitats de la Generalitat de Catalunya.
Advanced machine learning for Innovative Drug Discovery, AIDD project aims to develop methods to contribute to an integrated "One Chemistry" model that can predict outcomes ranging from different properties to molecule generation and synthesis. Training on various modalities allows the model to understand how to intertwine chemistry and biology to develop a new drug making its design robust and explainable. This project is an Innovative Training Network (ITN) funded by the European Commission for the period 2021 - 2023.