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Introduction

Drug efficacy and toxicity are controlled by interplay of pharmacokinetic, pharmaco-
dynamic and genetic factors. Most pharmaceutical compounds are active against more
than a single target. Off-target profiling is a recently established tool to identify critical
liabilities, which can lead to drug toxicity. Combined in silico/in vitro profiling strategies
are found to be most effective when conducting compound safety assessments.

a Tier |: Off-Target Prediction

Concept: Chemo-centric mining of protein-ligand interactions

In-silico off-target profiling

We have developed a tiered strategy to optimally support drug safety profiling.
Computational models for numerous off-target interactions allow for systematic
prediction of drug-target interactions. Target engagement in adverse pathways can
be analyzed with pathway databases, supporting the toxicity risk assessment and
mode-of-toxicity evaluation of drugs.

a Tier ll: Off-Target Profiling by QSAR

Concept: Global QSAR models for critical off-Targets
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« Sanofi and public bioassay data (CHEMBL, luphar, PDSP, BindingDB) « Sanofi and CEREP bioassay data
« Chemotargets CTLink as a platform to build and apply predictive off-target models  Cubist regression trees based on MOE descriptors
« Activity prediction using KNN models with distance weighting interpolation « Evaluation of applicability domain by similarity to training set
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Off-target models

Interactions: 2,207,000

Interactions: 808,057

enhanced by integration of Sanofi in-vitro data.
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f‘ Tier lll: ADR Prognosis based on Biological Networks and Mining in Pathway Databases |

Concept: Pathway mining to identify relationships between predicted off-targets
and modes of toxicity for novel drug candidates

IPA® (Ingenuity), MetaCore®, WikiPathways, Reactome are systematically
exploited for off-target engagement in adverse drug reactions

« Particularly for cardiac and reproductive toxicity, causal relationships between « Typical off-target activity threshold <10 puM to focus on effective interactions
off-target interaction and mode of toxicity can often be assumed
Cardiotoxicity Hepatotoxicity Reproductive Toxicity
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Summary

In-silico off-target profiling at Sanofi includes a growing portfolio of models, currently
including > 6000 similarity-driven CTlink models and 414 QSAR models. These
models are regularly curated and the model applicability domain is controlled to ensure
a maximum of correct predictions. Evidence for toxicity of drugs is generated by data
mining in pathway databases. In-silico toxicity analyses inform about potential safety
concerns of new molecules. Off-target profiling and PredictFX are regularly applied.
These methods serve as cost-effective tools to select compounds prior to screening. works and, as a next evolution step, considering inter-individual genetic differences.

In discovery, in silico predictions help to initiate focused experimental follow-up studies
and to enhance hit and lead selection. These methods are also applied in develop-
ment to support risk assessments for regulatory purpose, e.g. to create hypotheses
and to better understand mechanisms of toxicity.

Further method development will foster a better characterization of clinically relevant
adverse effects based on published knowledge and relevant target-side effect net-
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