
In-silico off-target profiling 
We have developed a tiered strategy to optimally support drug safety profiling. 

Computational models for numerous off-target interactions allow for systematic 

prediction of drug-target interactions. Target engagement in adverse pathways can 

be analyzed with pathway databases, supporting the toxicity risk assessment and 

mode-of-toxicity evaluation of drugs.  

Computational Prediction of Off-Target Related Risks of Molecules: 

Cardiotoxicity, Hepatotoxicity and Reproductive Toxicity 

Tier II: Off-Target Profiling by QSAR 

In-silico Lead Side Effect Profile 
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In-silico Kinase Profile  

• Normalization & filtering, validity domain Aggregation 

• Variable Selection with Genetic Algorithm Optimization 

• One Cubist Regression Tree  Model per Target 
Machine 
Learning 

CTLink 

Concept: Global QSAR models for critical off-Targets 

• Sanofi and CEREP bioassay data  

• Cubist regression trees based on MOE descriptors  

• Evaluation of applicability domain by similarity to training set 

Ion Channels 

Models:  9 

Summary 
In-silico off-target profiling at Sanofi includes a growing portfolio of models, currently 

including > 6000 similarity-driven CTlink models and 414 QSAR models. These 

models are regularly curated and the model applicability domain is controlled to ensure 

a maximum of correct predictions. Evidence for toxicity of drugs is generated by data 

mining in  pathway databases. In-silico toxicity analyses inform  about potential safety 

concerns of new molecules. Off-target profiling and PredictFX are regularly applied. 

These methods serve as cost-effective tools to select compounds prior to screening. 

Introduction 
Drug efficacy and toxicity are controlled by interplay of pharmacokinetic, pharmaco-

dynamic and genetic factors. Most pharmaceutical compounds are active against more 

than a single target. Off-target profiling is a recently established tool to identify critical 

liabilities, which can lead to drug toxicity. Combined in silico/in vitro profiling strategies 

are found to be most effective when conducting compound safety assessments.  
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In discovery, in silico predictions help to initiate focused experimental follow-up studies 

and to enhance hit and lead selection. These methods are also applied in develop-

ment to support risk assessments for regulatory purpose, e.g. to create hypotheses 

and to better understand mechanisms of  toxicity.  

Further method development will foster a better characterization of clinically relevant 

adverse effects based on published knowledge and relevant target-side effect net-

works and, as a next evolution step, considering inter-individual genetic differences.  
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Accuracy: 81.1%

Error: 18.9%

Sensitivity: 79.9%

Specificity: 81.3%

inactive active 

inactive 1019 234 1253 

active 43 171 214 
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CTLink Method 

Validation* 

*81.1% predictive accuracy  

based on 1467 Sanofi samples 

Experimental hERG affinity (pIC50) 

P
re

d
ic

te
d

 h
E

R
G

 a
ff
in

it
y
 (

p
IC

5
0
) + Test 

•   Training 

LSE1  Models:     33 

LSE2 Models:      74 

LSE3 Models:    109 

Core Models:  60 

Ext Models:   135 

 

Cubist Method 
Rule-based decision tree 

Terminal nodes with linear models 

 

 

 

 

 

 

 

 

 

 

Example: global hERG inhibition  

r2: 0.72, pred. r2: 0.67 

 

The model applicability domain can be substantially 

enhanced by integration of Sanofi in-vitro data.  

Bradykinine B1 antagonist  

Analysis of predicted interactions 

Observed interactions: AR KI=0.7µM, H2 IC50=6.6µM CB2  

IC50=7µM, CHRM3 IC50=0.5µM LDLR IC50=0.9µM  

• GSID_47351 was shown to promote treatment-related liver injury in two 

speciea (rats and dogs)  

• Hepatocellular necrosis and vacuolation was accompanied by and 

inflammatory cell infiltrates and significant ALT and bilirubin increase 

• Bile duct hyperplasia 

Several off-target interactions of GSID_47351 might be accountable  for 

the observed hepatotoxic effects 

Cardiotoxicity Hepatotoxicity Reproductive Toxicity 
Neurokinine antagonist  

Analysis of predicted interactions 

Observed interactions: 5HT2A IC50=0.07µM  

• Developmental toxicity observed in rabbit 

• GSID_47387  does not cause general or  

hepatocellular necrosis, but ALP increase 

was observed 

Mixed on-/off target effects might be 

accountable  for developmental toxicity 

10 µM 0.1 µM 

GSID_47351 

GSID_47387 

Causal Network  

Predicted target inhibition 
 

       weak          strong 
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Network relationships 
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        Effect not predicted 

 

Models:                1,811 

Cpds:               557,000 

Interactions: 2,207,000 

Models:             4,229 

Cpds:            358,169 

Interactions: 808,057 

Observed interactions: AChE IC50 = 90 nM, 

CHRM1 IC50 = 1 µM 

• Cardiotoxicity observed at mid and high dose, 

@10 mg/kg mice showing dyspnea, 

tachycardia and trembling 

Consistent with predicted effects 

 

Off-target models 

Concept: Chemo-centric mining of protein-ligand interactions 

• Sanofi and public bioassay data (CHEMBL, Iuphar, PDSP, BindingDB) 

• Chemotargets CTLink as a platform to build and apply predictive off-target models 

• Activity prediction using kNN models with distance weighting interpolation 

Tier III: ADR Prognosis based on Biological Networks and Mining in Pathway Databases  
Concept: Pathway mining to identify relationships between predicted off-targets 

and modes of toxicity for novel drug candidates 

• Particularly for cardiac and reproductive toxicity, causal relationships between          

off-target interaction and mode of toxicity can often be assumed  

IPA® (Ingenuity), MetaCore®, WikiPathways, Reactome are systematically 

exploited for off-target engagement in adverse drug reactions 

• Typical off-target activity threshold <10 µM to focus on effective interactions 

 

Tier I: Off-Target Prediction 

Antifungal Lead Compound 

CTLink off-target heatmap (part) 

 

Predicted target inhibition 
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Predicted target inhibition 
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